比特幣價格 比特幣價格
Ctrl+D 比特幣價格
ads

AND:全面綜述:女巫攻擊和防御方法_CCOM價格

Author:

Time:1900/1/1 0:00:00

點對點計算范式比其他傳統范式有很多優勢。例如,帶寬、內存和數據等資源可供其他所有參與用戶使用?。從廣義上講,這種范式包括結構化和非結構化系統。結構化疊加為數據和對等點發現提供確定性機制,而非結構化疊加在隨機圖中組織對等點并使用泛洪算法進行對等點和數據發現。大多數流行的點對點系統都缺乏“中央權威”,這使得這種范式能夠抵御故障攻擊。另一方面,缺乏這種中心化授權會導致許多具有挑戰性的安全問題:保護網絡系統所需的大多數安全服務都需要一種或另一種中心化授權,使得對等系統無法使用這些服務]。更糟糕的是,其中許多系統完全去中心化和開放的特性在其他分布式系統中導致了大范圍的未知安全威脅,包括女巫攻擊?。

女巫攻擊在點對點、有線和無線網絡環境中是眾所周知的。?在其基本形式中,代表攻擊者的對等點生成盡可能多的身份,并且表現得好像她是系統中的多個對等點?,旨在干擾系統的正常行為。?攻擊者可以生成的身份數量僅取決于攻擊者的能力,該能力受限于響應系統中其他對等點并發請求所需的帶寬、存儲與每個生成的女巫身份相對應的節點的路由信息所需的內存,以及在沒有明顯延遲的情況下處理并發請求所需的計算資源。?隨著硬件的急劇增長以及具有高帶寬速率的寬帶互聯網的廣泛傳播,即使是在通用硬件上運行的攻擊者也可能對大型系統造成重大損害。

女巫攻擊出現在很多情況下,同樣的,在點對點系統以及其他通用分布式系統和范式中必不可少的我的服務上也是常見的。此類環境包括投票系統、信譽系統、路由、分布式存儲等。為了說明這種攻擊在現實的系統中是如何工作的,請想象一個建立在點對點覆蓋?上的推薦系統。在這樣的系統中,系統的目標是根據其他人的推薦過濾出用戶可能感興趣的信息。在這種情況下,可以通過偽造多個身份?(女巫)充當多個用戶的攻擊者可以輕松地在合法用戶投票的合法對象上投票。

在任何現實的推薦系統中,通常對對象進行投票的合法用戶的數量始終不超過系統總用戶的?1%,這幾乎是可以保證的?。鑒于此,這種攻擊對攻擊者很有吸引力,他們是系統中的潛在用戶,試圖攻擊提供高度激勵的系統。例如,線上市場eBay,使用客戶的推薦來確定其賣家、使用其平臺銷售商品的人的聲譽,因此對于此類賣家進行不當行為以獲得更高聲譽的行為很有誘惑力。在許多其他情況中也會出現相同的情況,例如內容由用戶評級的點對點文件共享行為,以聲譽為依據分配帶寬的行為,在這一行為中,甚至該聲譽用于確定用戶分發的內容的好壞。在所有此類示例中,都存在用戶行為不端的誘因,而且女巫攻擊被證明是此類攻擊者實現其目標的強大工具。

為了防御攻擊,已經有人嘗試了幾種防御或緩解的形式來防御或限制攻擊的影響。這種攻擊可以大致分為兩種思想流派:中心化和去中心式防御。在中心化防御?中,中央權威負責驗證系統中每個用戶的身份。雖然這種防御在防御攻擊方面有些有效,但它對系統做出了某些假設,其中一些假設在點對點的去中心化系統中不容易實現。首先,正如名稱和操作描述所表明的那樣,此類系統需要中心化權限,出于安全性和功能性原因,許多此類系統可能無法負擔得起。此外,即使存在這樣的中心化權威,也需要一些與系統中用戶相關的憑據,以便將用戶的這些憑據與其數字身份相匹配:在許多情況下,獲取此類憑據是非常有挑戰性的工作。

另一方面,去中心化防御包括但不限于?中的工作,它們不需要系統中有中心化的權威,并為分散的點對點系統精心設計而成。在其操作的核心,此類防御會權衡系統中用戶之間的協作,以接納或拒絕可能是攻擊者的用戶。用戶的接納或拒絕基于與用戶關聯的憑據,如加密分布式防御的情況,或合法誠實用戶的網絡屬性,如使用社交圖的女巫防御的情況。?在任何一種解決方案中,防御的最終目標都是以分散的方式模擬中央權威的力量,并使用這種力量來檢測女巫和誠實的節點。

防御的另一種分類可能是根據這種防御的運作方式。?因此,以往的工作中,女巫防御可以分為使用可信認證的防御——其中證書通常是為誠實用戶生成的,并根據受信任機構的公鑰進行驗證,產生成本——其中用戶受到一些成本的懲罰,從而限制他們的可用資源數量,減少他們的不當行為,以及基于社交網絡的女巫防御。

這種防御在它們的假設、所應用的網絡類型、提供的保證以及產生的成本方面有很大不同。?為此,本文主要回顧、總結、比較和展示現有的方法中,女巫防御的不足之處。

女巫攻擊模型和目標

在本節中,詳細說明了大多數女巫攻擊研究和防御中通常假設的攻擊者模型,進一步探討了攻擊者的目標和防御目標。

問題陳述和模型

該問題被表述為系統中的單個用戶在系統中具有一種能力,此能力讓她像是具有多個分身一般行動。?這對于如此多的應用程序來說是有問題的,因為此類應用程序的正確性取決于同行的行為、他們的數量以及在系統中誠實地參與協作的意愿。?然而,試圖偏向系統整體行為的單個攻擊者的女巫身份不能滿足這樣的系統目標。

攻擊者的正式特征是她可以在系統中注入的虛假身份的數量。?攻擊者的動機是最大化虛假身份的數量。?攻擊者生成并注入系統的身份數量的價值和意義取決于應用程序本身,并因應用程序而異。?例如,要攻擊一個推薦系統,將系統中?1%的誠實用戶的匹配總和作為假身份就足夠了。?因為通常觀察到,即使對于該系統中非常受歡迎的對象,也只有?1%的誠實節點投票支持它,所以這尤其是一個足以使系統的行為產生偏差并超過系統中的誠實節點。也就是說,通過擁有比系統中某個對象投票的誠實節點的確切數量更多的單一身份,女巫攻擊者將能夠超過誠實節點的投票。?

跨鏈DID .bit成為OpenSea推薦域名,將于10月18號全面開放4-9位注冊:9月13日消息,跨鏈DID .bit成為OpenSea推薦的Domain Names合輯,其在OpenSea上累計交易量達到251 ETH(43 萬美金)。.bit將于北京時間10月18日晚8點全面開放4-9位賬戶注冊。從去年7月22日上線以來,.bit已經開放了4-9位的60%以及10位以上的100%注冊,.bit累計注冊賬戶已超14 萬個。

此前報道,8月15日,跨鏈DID .bit宣布完成1300萬美元A輪融資,CMB International領投,HashKey Capital, QingSong Fund, GSR Ventures, GGV Capital與SNZ參投。[2022/9/13 13:27:00]

另一方面,在其他系統中,例如用于通信匿名化的混合網絡,即使是少量的女巫身份可能會嚴重破壞系統中的承諾。?從理論上講,電路上兩個節點的妥協足以識別這種混合網絡上通信的發送方和接收方。?另一方面,網絡中足夠多的身份的妥協將使攻擊者能夠監控任意數量的電路。身份數量本身很重要的其他應用程序包括對文件共享系統的攻擊?,這樣的例子有很多。?

圖一在P2P疊加環境中幾種不同的女巫防御的方式

C/CA代表中心化的認證機構

D/C代表去中心化的加密原語

T/D代表可信設備認證

IP/T代表IP檢測

R/C代表基于成本循環的檢測

S/G代表基于社交圖譜的防御方式

女巫防御的目標和成功的標準

女巫防御的最終目標是通過在覆蓋網絡中偵查并且孤立女巫身份,或者那些對等地能夠產生這些女巫身份的節點,來消除女巫攻擊。但是,這一終極目標并不總是能夠實現,因為大多數防御,除了基于中心化可信認證的方案之外,大多數防御在其檢測機制中都有誤報和漏報的可能性,可能會容忍某些女巫節點,同時錯誤地報告其他誠實的節點,就像我們在假陽性和假陰性報錯中看到的那樣。假陽性報告指女巫節點被報告為誠實節點。另一方面,假陰性誠實節點被報告為女巫節點。防御機制的現實和實際可實現的目標是盡可能地減少假陰性率。?

女巫防御的深度

除了第?1節所示將女巫防御分為中心化和去中心化防御的廣泛分類之外,本文調查的女巫防御方式還包括兩大類技術:可信認證和資源測試類別,如圖?1所示。在可信認證的列表中,我們梳理了使用中心化認證機構、去中心化加密原語或可信設備的相關工作。

使用可信認證

可信認證方法可以說是當下最流行的方法之一,因為?Douceur已經證明它具有消除?Sybil攻擊的潛力?。?在這種方法的傳統形式中,中心化授權?(CA)用于通過將這些身份與預先分配的憑據進行匹配來確保分配給每個對等方的身份是唯一且合法的。這些憑證可能包括加密密鑰、通常由一次性密碼生成器?(OTP)生成的同步隨機字符串或由中心化認證頒發的數字證書。

雖然上述傳統形式的中心化證書頒發機構在文獻中有明確定義,但已經通過應用適用于分布式多方模型的加密原語來定義分布式證書方案,這些模型使假定誠實的對等方之間能夠協作以證明加入覆蓋的其他對等方.

中心化認證機構

中心化可信認證可能是唯一可以消除女巫攻擊的方法?。?在?P2P覆蓋的環境中,已經有一些關于使用中心化證書頒發機構進行憑證生成、分配和驗證的工作。?例如,使用第?5節中解釋的社交圖并利用公鑰密碼學作為構建塊的研究,假定用戶公鑰的真實性通過在離線階段通過中心化授權分配給用戶的證書?。?利用基于?CCA的方法的其他方案示例包括?、、和?中的工作。

加密原語

最近,已經涌現了一些關于加密原語的工作?。這些原語旨在提供用于驗證對等點的基礎設施,以便通過僅讓合法對等點參與覆蓋來使女巫攻擊更難發生。通常,這些工作試圖以去中心化方式利用公鑰基礎設施?(PKI)并使用閾值加密成分,以確保所謂的誠實用戶之間的協作,以驗證加入覆蓋其上的對等方的操作時間。有趣的是,明確陳述的動機超出了其中一些原語,這是因為文獻中的許多非加密協議都假設存在用于覆蓋合法用戶的認證系統。因此,加密方法旨在確保此類協議的成功運行。

可信設備

與可信認證的想法類似,一些研究與實踐,建議使用可信設備或可信模塊來存儲先前由中心化機構分配給用戶的證書、密鑰或身份驗證字符串。?這種設備由于其潛在的高價而基本上很難獲得,因此可用于限制女巫攻擊者的機會。?在和中提出了這種機制的例子,盡管后來的工作是在無線傳感器網絡上。?理論上,當攻擊者意圖獲取盡可能多的女巫身份時,這些防御措施可能會奏效。?然而,在匿名和推薦系統等情況下,考慮到較少的女巫身份就可能會造成很大的危害,所以這些防御措施已經過時了。

資源測試

除了用于防御女巫攻擊的資源測試方法之外,基本思想是檢查與假定不同用戶相關聯的一組身份是否擁有與身份數量匹配的足夠資源。這些資源可能包括計算能力、帶寬、內存、IP地址,甚至信任憑證。盡管?Douceur證明了資源測試的想法是無效的?,但一些研究人員認為它是一種最低限度的防御。也就是說,該方法不能完全消除攻擊,但是會使其女巫攻擊更難發生。

浪潮信息宣布其元宇宙服務器將全面支持英偉達 Omniverse:金色財經消息,浪潮信息宣布元宇宙服務器MetaEngine全面支持NVIDIA Omniverse Enterprise,提供支撐大規模數字孿生場景的軟硬件一體化解決方案OVX,可以支撐大規模、高復雜、高逼真數字場景協同創建和實時渲染仿真,成為連接現實世界和數字世界的堅實底座。

浪潮元宇宙服務器MetaEngine具有領先的硬件架構,支持最新英偉達A40 GPU和ConnectX-6 Dx智能網卡,并承載大規模數字孿生構建和運行所需的技術和工具,提供對建模、渲染、仿真、AI等多元負載的算力支持。

此前報道,3月17日,浪潮信息發布元宇宙服務器MetaEngine。(美通社)[2022/3/24 14:15:56]

理論上,此類防御中的大多數方案將女巫身份的數量限制為比沒有防御的情況下的數量少。然而,在實踐中,即使是更少數量的女巫身份也足以威脅許多系統的可用性和安全性。例如,如前所述,匿名系統中的匿名性取決于每個電路的兩個節點。此外,在線聲譽系統中有?1%的虛假身份就足以投票給合法節點。

IP測試

通用測試方案包括測試對等方的?IP地址,試圖確定他們的位置并將其與他們的活動相匹配。特別是,如果從同一特定地理區域產生大量活動,則其中一些活動很可能是由于女巫身份。此外,此類作品中的假設是獲取不同地理區域的?IP地址,但這并不便宜。例如,弗里德曼等人?介紹了?Tarzan,其中根據節點在特定自治系統中的地理位置測試其?IP地址。Cornelli等人在?和?中介紹了類似的結果。

這些工作的主要假設是?IP地址很難在廣泛的地理區域中獲得。然而,最近有跡象表明存在巨大的僵尸網絡?,受感染的主機由單個管理實體控制并駐留在不同的自治系統中,可以肯定的是,這種防御機制是無用的。

成本循環

一些研究及實踐,建議將經常性成本作為防御女巫攻擊的一種方法。?特別是,計算難題?和圖靈測試被建議作為解決方案。?然而,出于同樣的原因,IP測試對控制僵尸網絡的攻擊者不起作用,這些基于成本的方案也不會起作用。?此外,對于類似?CAPTCHA的解決方案,已經表明?Sybil攻擊者可能會在控制的站點上發布?CAPTCHA測試,供用戶測試以訪問攻擊者提供的服務。

此外,某些版本的?CAPTCHA容易受到某些圖像處理攻擊?。

基于社交圖譜的防御

雖然之前針對分布式系統中女巫攻擊問題提出的大多數解決方案都有局限性和缺點,但基于社交網絡的女巫防御嘗試以優雅的方式克服這些問題。首先,基于社交網絡的女巫防御大多是解決女巫攻擊問題的去中心化解決方案,這意味著這些設計在沒有任何中心授權的情況下運行——這是大多數分布式系統中的重要特性。由于隨機游走理論,這種去中心化的操作模型更加容易,隨機游走理論是這些防御中最常用的成分。其次,這些防御利用社交節點之間社交鏈接的信任,使誠實節點之間的協作變得可能且容易。第三也是最后一點,這些防御在幾項研究中得到了證明,它們能以低成本實用且有效地防御女巫攻擊,而且它們現在進一步開發為許多服務的組件,包括分布式哈希表?(DHT)、抗女巫攻擊投票,并用于移動網絡路由。

盡管它們在設計細節和操作上有很大不同,但所有基于社交網絡的女巫防御都有兩個共同的假設:算法屬性即快速混合屬性以及信任。?首先,這些防御基于社交圖的“快速混合”屬性。?非正式地,社交圖的快速混合屬性意味著此類圖中的“誠實”節點很好地嚙合,并且誠實區域不包含稀疏切割——一種將兩個大型誠實節點子集與一些社交網絡連接起來的切割。為簡單起見,社交圖的快速混合特性意味著來自社交圖中任意節點的隨機游走將非常接近在幾步后該圖上定義的馬爾可夫鏈?(MC)的平穩分布。?在百萬節點的網絡中,建議這樣的步數為?10到?15步。?

這種防御脈絡的第二個共同假設是信任。?特別是,所有這些防御都假定在底層社交圖中具有良好的信任值,例如,通過節點之間的面對面交互所表明的。?為了推斷任意多個攻擊者的社交鏈接滲透社交網絡的難度,這個特定的假設是必要的。?雖然用于正確識別社交圖中“誠實”節點的女巫防御的操作是由快速混合假設保證的,并且使用這種算法屬性的相應方案的構建,識別?女巫節點的能力僅在假設以下條件下得到保證攻擊者,或攻擊者的集體,控制著自己與社交圖中其他誠實節點之間的一些鏈接。

下面我們梳理了一些被廣泛引用和關注的基于社交網絡的女巫防御的方法。

SybilGuard

SybilGuard的設計,歸功于?Yu等人,它使用信任擁有社交網絡的快速混合特性來檢測女巫節點。從技術上講,SybilGuard包括兩個階段:初始化階段和在線檢測階段。在初始化階段,每個節點構建它的路由表,作為其相鄰節點的隨機排列,用于輸入和輸出邊對。接下來,每個節點啟動一個長度為?w=O(根號nlogn)的隨機游走,并按照使用隨機排列構建的路由表將其傳播到其相鄰節點。隨機游走路徑上的每個節點都會注冊隨機游走發起者的見證人,然后當該節點成為嫌疑節點時充當該節點的見證者。此外,利用隨機游走的回溯性,隨機游走的每個發起者都會收到“見證人”列表?.

在線上階段,驗證者確定嫌疑人是否誠實,如下所示。?首先,嫌疑人將其隨機路由上的“證人”的地址發送給驗證者。?因此,驗證者將見證人列表與其驗證者路由列表進行比較。?如果兩個集合之間沒有交集,驗證者將中止并拒絕嫌疑人。否則,驗證者將繼續,要求比較兩個集合之間的交集上的節點來驗證嫌疑人是否有用它們注冊的公鑰。如果嫌疑人被交叉節點驗證,則驗證者接受嫌疑人或將其標記為女巫節點。

安信證券:“復蘇牛”是全面牛 市場會回歸到成長主線:安信證券陳果團隊發文稱,當前背景是全球流動性泛濫且近期看不到明顯收緊,中國經濟數據持續超預期,且市場可預期未來幾個季度中國經濟與企業盈利同比增速逐步上行,這是A股“復蘇牛”邏輯,這也是全面牛市邏輯。當前環境經濟溫和復蘇,但科技迎來的是強景氣,低估值板塊短期關注券商、地產、建材、保險等。本輪經濟回升,成長景氣更好。在低估值板塊完成合理補漲之后,在解禁等擔憂趨緩后,我們認為市場會回歸到成長主線。[2020/7/6]

SybilLimit

與使用單個長隨機游走的?SybilGuard不同,SybilLimit建議使用多個較短的隨機游走。此外,與?SybilGuard。特別地,游走發起者的公鑰注冊在隨機游走到達的最后一條邊下的最后一個節點上。同樣利用隨機路由的回溯性,注冊發起者節點公鑰的見證人將他們的身份返回給該節點。社交圖中的每個節點都執行相同的過程,并且每個發起注冊隨機游走的節點都收集一組見證人。

在線上階段,SybilLimit也與?SybilGuard相同,嫌疑人將證人的標識符和地址發送到驗證者節點,該節點將比較嫌疑人列表中的證人,試圖找到沖突。?如果在驗證者端的兩個集合中發生沖突,驗證者會要求兩個集合中具有共同身份的見證人驗證嫌疑人的身份,并根據此過程的結果決定是接受還是拒絕嫌疑人。如果兩者之間沒有交集驗證者通過將嫌疑人標記為攻擊者來中止并拒絕嫌疑人。

用于推理?SybilLimit的可證明保證的主要成分與?SybilGuard中的相同。特別地,假設隨機游走長度?w是社交圖的混合時間,那么在這種隨機游走中選擇的最后一個節點是根據平穩分布的。

此外,隨機游走中的最后一條邊是從社交圖中的邊中“幾乎”均勻隨機選擇的。此外,假設?r=O,如果正確選擇了隱藏常量?r0,則驗證者和嫌疑人的采樣邊緣之間的交集將以壓倒性的概率存在。作者將這種條件稱為“交集”條件,用于保證誠實區域中節點隨機游走的高概率交集。與?SybilGuard一樣,假設有?g個攻擊者邊緣,則允許攻擊者在最多?gwr=O(g×根號?n×logn)尾上注冊其女巫身份的公鑰。在這種情況下,每個附加邊都會引入額外的?O(logn)女巫身份。

SybilLimit的安全性也很大程度上依賴于?w。?由于沒有估計參數的確切值的機制,因此低估或高估這些參數都是有問題的,如上所示。?SybilLimit還提供了一種用于估計該參數的“基準測試技術”,該技術也不對參數估計的質量提供任何可證明的保證。?最后,只要?g=o(n/logn),SybilLimit就可以保證每個攻擊邊緣引入的女巫身份的數量。?請注意,SybilGuard和?SybilLimit都不需要對其運營的社交網絡有任何全局了解,并且可以以完全去中心化的方式實施。

SybilInfer

SybilInfer使用在隨機游走上定義的概率模型來推斷生成此類軌跡的一組節點?X的真實程度。?SybilInfer中的基本假設是每個節點都擁有社交網絡的全局視圖和知識,網絡是快速混合的,發起?SybilInfer的節點是一個誠實節點。從技術上講,SybilInfer試圖最終將圖中的不同節點標記為誠實節點或女巫節點。在?SybilInfer中,n個節點的網絡中的每個節點執行?s次行走,因此通用跡中的行走總數為?s×n。這些跡中的每個痕跡由第一個節點和隨機游走中的最后一個節點構成。與?SybilGuard和?SybilLimit中使用的統一轉移概率不同,SybilInfer定義了節點上統一的轉移矩陣,從而懲罰具有更高度的節點。?SybilInfer操作的最終目標是計算概率?P(X=Honest|T);也就是說,計算給定軌跡?T的一組節點?X是誠實的概率。這個概率是使用貝葉斯定理計算的。

SybilInfer通過技術手段對誠實配置進行采樣,該配置最初用于從跟蹤中確定一組節點的誠實性。?這個采樣是使用?Metropolis-Hasting算法進行的,它首先考慮一個集合?X0并通過刪除或添加節點到集合中一次修改該集合:在每次,并且有概率從?Xˉ0中填充一個新節點?x被添加到?X0使?X′=X0[x或?X0中的節點以概率?premove被刪除。?該過程執行?n×logn輪以獲得獨立于?X0的良好樣本。

SumUp

不像?SybilGuard和?SybilLimit是通用的節點準入問題,并且在不需要單個節點攜帶有關社交圖的全局信息的意義上去中心化,以及用于推斷節點誠實度的?Sybil-Infer,SumUp試圖在投票聚合的背景下解決女巫攻擊問題。在這種情況下,一個稱為投票收集器的節點希望以抗女巫的方式從網絡中的其他節點收集投票。這就是,在給定數量的對象投票中,投票收集者希望增加誠實節點接受的投票比例,減少攻擊者通過其攻擊邊緣投出的接受投票,并在攻擊者多次反復行為不當時識別攻擊者。在?SumUp的核心是,鏈接容量分配機制用于自適應地為信任擁有社交圖中的鏈接分配容量,并限制從投票者一側傳播到選票收集器的選票數量。?SumUp的自適應投票流機制使用了傳統在線投票系統的兩個觀察結果:系統中的少數用戶對單個對象進行投票,并且——如果這種投票系統是在社交圖之上實現的——擁堵僅出現在靠近選票收集器的鏈上。因此,SumUp建議根據它們與投票收集器的距離在社交圖中的不同鏈接上分發大量票證。?

該技術的一個明顯吸引力在于其高計算要求:典型算法的運行時間將需要一個操作邊數的順序,以收集單個選民的投票。它的作者進一步提出了一種啟發式方法,它僅使用圖直徑步數的順序,其中每個節點貪婪地選擇更高級別的節點,通過該節點使用非零容量連接并傳播投票,直到達到投票收集器。?在任何時間,考慮到貪婪步驟可能不會導致非零容量,每個節點都被允許探索其他節點以尋找相同或更低級別的路徑。

聲音 | 咨詢公司Gartner:金融服務行業距全面部署區塊鏈至少還需等待3年:全球咨詢公司高德納(Gartner)周一表示,由于缺失互操作性標準,金融服務行業距離全面部署區塊鏈至少還需等待3年的時間。Gartner高級研究總監Fabio Chesini指出:“金融服務公司的區塊鏈標準目前是分散和不成熟的,我們需要3到5年的時間,直到標準變得成熟并確定下來。”(Indiatimes)[2019/9/16]

GateKeeper

GateKeeper借用了?SumUp和?SybilLimit的工具來實現高效操作。尤其是它試圖通過合并?SumUp的票證分發組件來提高?SybilLimit的性能。不像在?SumUp中,節點通過從投票者到收集者的非零路徑被接納,如前所述,GateKeeper只考慮?SumUp的“票證分配”階段,其中票證被準入控制器用于接納節點。此類票證以與?SumUp中相同的方式從控制器傳播到所有節點。但是,為了限制攻擊者獲得更多門票的機會并降低其整體優勢,GateKeeper中的控制器隨機選擇?m個不同的隨機節點;這些節點被稱為“有利節點”,當且僅當可疑節點從不同的有利位置收到?fadmitm票證時,它才會被允許。因此,一旦一個節點被這個有利位置的一小部分允許,它就會被允許。為了防止雙花攻擊,GateKeeper建議使用門票的路徑的加密簽名鏈。

其他基于社交網絡的?DHT

SPROUT是另一種?DHT路由協議,它使用具有信任的社交圖的社交鏈接將信息路由到在社交網絡上操作的用戶。?SPROUT實際上建立在?Chord之上,并在?Chord中向任何給定節點的社交網絡中的其他用戶添加了額外的鏈接,這些用戶隨時在線。?通過這樣做,SPROUT聲稱可以提高?Chord本身的可靠性和負載分布。

Whanau最初在?中提出,其中?中的工作包括對性能和安全性的進一步分析和證明以及端到端保證的實施和演示。

在?中,作者使用引導圖——顯示了DHT中引入關系的樹,以防御?女巫攻擊。通過修改感興趣的?DHTChord的操作,使每個節點返回它知道的所有節點的地址,作者設計了幾種用于減少女巫攻擊影響的策略。與使用?Chord上的接近度作為路由度量的原始?Chord不同,該解決方案考慮了多種路由策略,包括多樣性、混合和?zig-zag。作者通過實驗表明,當此類策略在女巫攻擊下運行時,它可用于更有效地執行抗女巫的DHT查找,而且它的查詢次數將少于普通?Chord設計所需的查詢數量。

MobID的設計是一種基于社交網絡的女巫防御,聲稱可以為移動環境提供強大的防御,而現有的防御主要是為點對點網絡設計的,并且基于隨機游走理論。此外,MobID使用介數來確定節點的優度,以防御女巫攻擊。然而,這項工作似乎沒有提供任何可證明的保證。各種方案與文獻中的其他方案之間的比較見表?1和表?2。

結論

?P2P覆蓋網絡極易受到女巫攻擊,并且由于?P2P覆蓋的性質,解決女巫攻擊這一問題比以往都難:它不鼓勵安全實施所需的中心化認證機構,而且甚至有時中心化認證機構在?P2P覆蓋設計中不存在。?本文,主要梳理了用于防御?P2P覆蓋中的女巫攻擊的不同方法。?并對不同防御的假設、特征和缺點進行比較。

參考文獻:

GeorgeDanezis,ChrisLesniewski-laas,M.FransKaashoek,andRossAnderson.Sybil-resistantdht

routing.InInESORICS,LectureNotesinComputerScience,pages305–318,Berlin,Heidelberg,2005.Springer.

PetarMaymounkovandDavidMazi`eres.Kademlia:Apeer-to-peerinformationsystembasedonthexormetric.InPeterDruschel,M.FransKaashoek,andAntonyI.T.Rowstron,editors,IPTPS,LectureNotesinComputerScience,pages53–65,Berlin,Heidelberg,2002.Springer.

IonStoica,RobertMorris,DavidR.Karger,M.FransKaashoek,andHariBalakrishnan.Chord:Ascalablepeer-to-peerlookupserviceforinternetapplications.InSIGCOMM,pages149–160,NewYork,NY,USA,2001.ACM.

YongWang,XiaochunYun,andYifeiLi.Analyzingthecharacteristicsofgnutellaoverlays.InITNG,pages1095–1100,Washington,DC,USA,2007.IEEEComputerSociety.

VivekPathakandLiviuIftode.Byzantinefaulttolerantpublickeyauthenticationinpeer-to-peer

systems.ComputerNetworks,50(4):579–596,2006.

韓國自1月5日始全面禁止未成年人交易加密貨幣:韓國對加密貨幣交易再度制定規則:其中未成年人及在韓外國人交易均受到限制,韓國主流交易所Bithumb、Coinone和Coinnest已發布公告迎合新政。根據公告顯示:Bithumb將在2018年1月1日起,禁止未成年人(未滿19歲)交易;同日,禁止非在韓居住的外國人交易。Coinone將在2018年1月5日20:00之后,禁止未成年人交易,1月1日-5日,需撤出所有資產;2018年1月2日20:00之后,不居住在韓國的人、居住在韓國的外國人的韓元存款不被接受。Coinnest將在2018年1月5日21:00起,禁止未成年人使用賬戶。[2018/1/1]

JohnDouceurandJudithS.Donath.Thesybilattack.InIPDPS,pages251–260,Washington,DC,USA,2002.IEEE.

HaifengYu,ChenweiShi,MichaelKaminsky,PhillipB.Gibbons,andFengXiao.Dsybil:Optimalsybil-resistanceforrecommendationsystems.InIEEESymposiumonSecurityandPrivacy,pages283–298,Washington,DC,USA,May2009.IEEEComputerSociety.

MiguelCastro,PeterDruschel,AyalvadiJ.Ganesh,AntonyI.T.Rowstron,andDanS.Wallach.Secureroutingforstructuredpeer-to-peeroverlaynetworks.InOSDI,Berkeley,CA,USA,2002.USENIXAssociation.

AtulAdya,WilliamJ.Bolosky,MiguelCastro,GeraldCermak,RonnieChaiken,JohnR.Douceur,JonHowell,JacobR.Lorch,MarvinTheimer,andRogerWattenhofer.Farsite:Federated,available,andreliablestorageforanincompletelytrustedenvironment.InOSDI,NewYork,NY,USA,2002.USENIXAssociation.

JonathanLedlieandMargoI.Seltzer.Distributed,secureloadbalancingwithskew,heterogeneityandchurn.InINFOCOM,pages1419–1430,Washington,DC,USA,2005.IEEE.

Fran?coisLesueur,LudovicM′e,andVal′erieVietTriemTong.Anefficientdistributedpkiforstructuredp2pnetworks.InProceedingofP2P,pages1–10,Washington,DC,USA,2009.IEEE

ComputerSociety.

Fran?coisLesueur,LudovicM′e,andVal′erieVietTriemTong.Adistributedcertificationsystemforstructuredp2pnetworks.InDavidHausheerandJ¨urgenSch¨onw¨alder,editors,AIMS,volume5127ofLectureNotesinComputerScience,pages40–52,Berlin,Heidelberg,2008.Springer.

Fran?coisLesueur,LudovicM′e,andVal′erieVietTriemTong.Asybil-resistantadmissioncontrolcouplingsybilguardwithdistributedcertification.InWETICE,pages105–110,Washington,DC,USA,2008.IEEEComputerSociety.

Fran?coisLesueur,LudovicM′e,andVal′erieVietTriemTong.Asybilproofdistributedidentity

managementforp2pnetworks.InISCC,pages246–253,Washington,DC,USA,2008.IEEE.

AgapiosAvramidis,PanayiotisKotzanikolaou,andChristosDouligeris.Chord-pki:Embeddinga

publickeyinfrastructureintothechordoverlaynetwork.InJavierLopez,PierangelaSamarati,

andJosepL.Ferrer,editors,EuroPKI,volume4582ofLectureNotesinComputerScience,pages354–361,Berlin,Heidelberg,2007.Springer.

NikitaBorisov.Computationalpuzzlesassybildefenses.InAlbertoMontresor,AdamWierzbicki,

andNahidShahmehri,editors,Peer-to-PeerComputing,pages171–176,Washington,DC,

USA,2006.IEEEComputerSociety.

HaifengYu,PhillipB.Gibbons,andMichaelKaminsky.Towardanoptimalsocialnetwork

defenseagainstsybilattacks.InIndranilGuptaandRogerWattenhofer,editors,PODC,pages

376–377.ACM,2007.

HaifengYu,PhillipB.Gibbons,MichaelKaminsky,andFengXiao.Sybillimit:Anear-optimalsocialnetworkdefenseagainstsybilattacks.InIEEESymposiumonSecurityandPrivacy,pages3–17,Washington,DC,USA,2008.IEEEComputerSociety.

HaifengYu,MichaelKaminsky,PhillipB.Gibbons,andAbrahamFlaxman.SybilGuard:defendingagainstsybilattacksviasocialnetworks.InLuigiRizzo,ThomasE.Anderson,andNickMcKeown,editors,SIGCOMM,pages267–278,NewYork,NY,USA,2006.ACM.

HaifengYu,MichaelKaminsky,PhillipB.Gibbons,andAbrahamD.Flaxman.Sybilguard:defendingagainstsybilattacksviasocialnetworks.IEEE/ACMTrans.Netw.,16(3):576–589,2008.

NguyenTran,JinyangLi,LakshminarayananSubramanian,andShermanS.M.Chow.Optimalsybil-resilientnodeadmissioncontrol.InThe30thIEEEInternationalConferenceonComputerCommunications(INFOCOM2011),Shanghai,P.R.China,2011.IEEE.

ChrisLesniewski-LassandM.FransKaashoek.Whˉanau:Asybil-proofdistributedhashtable.In

7thUSENIXSymposiumonNetworkDesignandImplementation,pages3–17,Berkeley,CA,USA,

2010.USENIXAssociation.

C.Lesniewski-Laas.ASybil-proofone-hopDHT.InProceedingsofthe1stworkshoponSocialnetworksystems,pages19–24,NewYork,NY,USA,2008.ACM.

PaulF.Syverson,DavidM.Goldschlag,andMichaelG.Reed.Anonymousconnectionsand

onionrouting.InIEEESymposiumonSecurityandPrivacy,pages44–54,Washington,DC,USA,

1997.IEEEComputerSociety.

PengWang,JamesTyra,EricChan-tin,TysonMalchow,DenisFooKune,andYongdaeKim.

Attackingthekadnetwork,2009.

B.N.Levine,C.Shields,andN.B.Margolin.Asurveyofsolutionstothesybilattack.Technical

report,UniversityofMassachusettsAmherst,Amherst,MA,2006.

RodrigoRodrigues,BarbaraLiskov,andLiubaShrira.Thedesignofarobustpeer-to-peersystem.In10thACMSIGOPSEuropeanWorkshop,pages1–10,NewYork,NY,USA,2002.ACM.

JamesNewsome,ElaineShi,DawnSong,andAdrianPerrig.Thesybilattackinsensornetworks:analysis&defenses.InIPSN’04:Proceedingsofthe3rdinternationalsymposiumonInformationprocessinginsensornetworks,pages259–268,NewYork,NY,USA,2004.ACM.

MichaelJ.FreedmanandRobertMorris.Tarzan:apeer-to-peeranonymizingnetworklayer.In

VijayalakshmiAtluri,editor,ACMConferenceonComputerandCommunicationsSecurity,pages193–206,Washington,DC,USA,2002.ACM.

FabrizioCornelli,ErnestoDamiani,SabrinaDeCapitanidiVimercati,StefanoParaboschi,andPierangelaSamarati.Choosingreputableserventsinap2pnetwork.InWWW,pages376–386,NewYork,NY,USA,2002.ACM.

BrentByungHoonKang,EricChan-Tin,ChristopherP.Lee,JamesTyra,HunJeongKang,ChrisNunnery,ZachariahWadler,GregSinclair,NicholasHopper,DavidDagon,andYongdaeKim.Towardscompletenodeenumerationinapeer-to-peerbotnet.InWanqingLi,WillySusilo,UdayaKiranTupakula,ReihanehSafavi-Naini,andVijayVaradharajan,editors,ASIACCS,pages23–34,NewYork,NY,USA,2009.ACM.

FrankLi,PrateekMittal,MatthewCaesar,andNikitaBorisov.Sybilcontrol:practicalsybil

defensewithcomputationalpuzzles.InProceedingsoftheseventhACMworkshoponScalabletrustedcomputing,pages67–78.ACM,2012.

LuisvonAhn,ManuelBlum,NicholasJ.HopperandJohnLangford.Captcha:Usinghardaiproblemsforsecurity.InEliBiham,editor,EUROCRYPT,volume2656ofLectureNotesinComputerScience,pages294–311,Berlin,Heidelberg,2003.Springer.

JeffYanandAhmadSalahElAhmad.Breakingvisualcaptchaswithnaivepatternrecognitionalgorithms.InACSAC,pages279–291,Washington,DC,USA,2007.IEEEComputerSociety.

N.Tran,B.Min,J.Li,andL.Subramanian.Sybil-resilientonlinecontentvoting.InNSDI,Berkeley,CA,USA,2009.USENIX.

SergioMarti,PrasannaGanesan,andHectorGarcia-Molina.Dhtroutingusingsociallinks.InIPTPS,pages100–111,Washington,DC,USA,2004.IEEE.

DanieleQuerciaandStephenHailes.Sybilattacksagainstmobileusers:friendsandfoestothe

rescue.InINFOCOM’10:Proceedingsofthe29thconferenceonInformationcommunications,pages

336–340,Piscataway,NJ,USA,2010.IEEEPress.

AbedelazizMohaisen,AaramYun,andYongdaeKim.Measuringthemixingtimeofsocialgraphs.InProceedingsofthe10thannualconferenceonInternetmeasurement,IMC’10,pages383–389,

NewYork,NY,USA,2010.ACM.

BimalViswanath,AnsleyPost,KrishnaP.Gummadi,andAlanMislove.Ananalysisofsocialnetwork-basedsybildefenses.InSIGCOMM,NewYork,NY,USA,August2010.ACM.

GeorgeDanezisandPrateekMittal.SybilInfer:Detectingsybilnodesusingsocialnetworks.In

The16thAnnualNetwork&DistributedSystemSecurityConference,LectureNotesinComputerScience,Berlin,Heidelberg,2009.Springer-Verlag.

AbedelazizMohaisen,HuyTran,NicholasHopper,andYongdaeKim.Understandingsocialnetworkspropertiesfortrustworthycomputing.InICDCSWorkshops,pages154–159.IEEE,2011.

AbedelazizMohaisenandScottHollenbeck.Improvingsocialnetwork-basedsybildefensesbyaugmentingsocialgraphs.InWISA,2013.

AbedelazizMohaisen,NicholasHopper,andYongdaeKim.Keepyourfriendsclose:Incorporatingtrustintosocialnetwork-basedsybildefenses.InINFOCOM,pages1943–1951.IEEE,2011.

HaifengYu.Sybildefensesviasocialnetworks:atutorialandsurvey.ACMSIGACTNews,42(3):80–101,2011.

原文作者:?AzizMohaisen,JoongheonKim

貢獻者:Natalie,DAOctor@DAOrayaki

原文:?TheSybilAttacksandDefenses:ASurvey

Tags:ANDINGORKCOMDANDYSINGLE幣GLAD NetworkCCOM價格

加密貨幣
區塊鏈:智能合約體系與功能服務的融合和革新?NA生態最大程度打造開發者喜愛度最高的公鏈_區塊鏈存證

變幻莫測的區塊鏈其中蘊藏著數以萬億計的潛在市場,隨著進程的不斷突破,區塊鏈技術圍繞公鏈展開的數字競賽已成為開發者們必將遇到的核心關鍵.

1900/1/1 0:00:00
區塊鏈:金色沙龍第67期:跨鏈橋-孤島互鏈 生態治理與關鍵_區塊鏈dapp開發語言

由金色財經舉辦的金色沙龍第67期線上版:“跨鏈橋-孤島互鏈,生態治理與關鍵”即將于7月23日14:00在金色財經直播平臺&微信V67直播間內舉辦.

1900/1/1 0:00:00
ARK:金色觀察 | 數據告訴你 ARK究竟有多熱衷加密貨幣市場_比特幣

ARK,在這一年被加密市場封神。ARK是一家總部位于美國紐約資產管理公司,由凱瑟琳·伍德于2014年創建。截至2021年2月,該公司管理大約500億美元資產.

1900/1/1 0:00:00
數字人:數字人民幣的價值轉移形式和技術路線選擇_數字貨幣

移動支付網消息:7月16日,中國人民銀行發布了《中國數字人民幣的研發進展白皮書》,以闡明人民銀行在數字人民幣研發上的基本立場,闡釋數字人民幣體系的研發背景、目標愿景、設計框架及相關政策考慮.

1900/1/1 0:00:00
AND:Kusama和波卡平都采用的蠟燭拍賣 到底好在哪?_kus幣的曲線圖

原文標題:《研究更新:蠟燭拍賣「CandleAuctions」案例》平行鏈拍賣是Kusama和Polkadot的核心特征。拍賣結果決定了哪些項目可以獲得平行鏈插槽以及需要鎖定代幣的數量.

1900/1/1 0:00:00
NFT:解密NFT、進軍元宇宙 區塊鏈與價值實體將如何鏈接?_區塊鏈游戲幣最高漲多少

在評論本輪NFT的進展時,如果把加密市場、流行文化、Z世代消費主義、科技、賽博朋克思潮和數字藝術看做是眾多不相干的獨立活動,只是恰巧同時進行,我們將陷入在各個領域彷徨的孤立感.

1900/1/1 0:00:00
ads