你知道《太空歌劇院》嗎?
它是一幅AI作的畫,并拿到了藝術比賽的一等獎。在2022年,AI作畫已經變得如此簡單,你只要會打字就行。在一片高斯噪聲中逐漸顯露出精彩絕倫的顏色和圖案,AI是怎么畫畫的?為什么能畫得這么好?會不會取代人類設計師?
更令人費解的在于,AI有沒有自己的邏輯思辨能力?
其實,我們還處在人工智能的早期,AI對真正的邏輯和某個垂直領域的理解還不深,但不斷強化它的邏輯思維能力一定會是接下來研發的重點。
書接上回,這次真格投資副總裁林惠文將帶領我們,從上次ChatGPT的AI文字跳到AI圖片,繼續探索AI世界。從AIGC圖片背后的模型,到模型之間的關系以及發展歷程。除此之外,我們還準備了對AI領域相關問題的解惑和一些好用的工具推薦,請一定不要錯過~
非常榮幸今天能跟大家分享一些AIGC圖片相關的梳理,在漫漫的熊市之中,近期我們看到了很多驚人的生成效果。
首先我們來看一下AI生成的圖片。
這是最近非常火的AI生成圖片平臺Midjourney產生的一些圖片效果,可以看到非常真實,也有很強的創意效果。它是如何做到的?
通俗易懂地來講有三個步驟。首先,把人類的文字轉換成計算機能夠理解的表達,然后把計算機能理解的文本表達轉換成計算機能理解的視覺描述,再接下來,把計算機能理解的視覺描述生成人類能夠看懂的圖片。
“澳本聰”Craig Wright起訴比特幣開發者案即將開庭:金色財經報道,有“澳本聰”之稱的Craig Wright在英國起訴了16名比特幣開發者,該案件即將在倫敦開庭審理。
Craig Wright起訴包括Roger Ver、Blockstream聯合創始人Matt Corallo和Greg Maxwell等16名開發者,要求其賠償因丟失或被黑客盜取的價值40億美元的比特幣。該案曾于2022年3月被駁回。[2023/2/4 11:47:01]
以DALLE2為例,它訓練了3個模型來做這件事情。接下來,我會分別講述。
CLIP模型
第一個模型是CLIP模型,負責將文本和視覺圖像聯系起來。
過去的很多算法就像是拿1萬張人類已經標注了類別的照片,讓計算機去尋找不同類別照片的差異化特征。最大的缺點是,它無法標注世間萬物,只能分類有限的集合,同時人力標注會成為學習的上限。
CLIP模型帶來的新思路是什么?它很像是真實生活中教小朋友認識物體。看到一個東西就直接告訴小朋友,這是一只游泳的鴨子,而不是一次性拿20張鴨子的圖片告訴他,這是鴨子,你記住它的所有特征。CLIP模型的算法實現了這樣一個特點,只要我們有充足的算力,就能學會世間的萬物。
CLIP模型的數據集從哪來?它來自于互聯網上圖文的匹配對,總共收集了4億張的圖文匹配對,再經過一個圖文編碼器,把人類能看懂的文字和圖片轉換成計算機能懂的數據結構。
CLIP模型用到了兩個編碼器,視覺編碼器叫VisionTransformer,文字編碼器叫Transformer。下圖是VisionTransformer編碼器產生的效果圖,可以看到兩張圖片里背景部分的顏色被大幅弱化,強調了網球和黑狗的輪廓。這就是優秀的編碼器能實現的效果:用人類的視角找重點,進行數據降維。
動態 | 美國版權局不會“認可”Craig Wright為中本聰:據coindesk報道,美國版權局周二表示,不會“認可”Craig Wright為中本聰(Satoshi)。美國版權局在新聞稿中寫道:“作為一般規則,當版權局收到注冊申請時,申請人會證明提交材料中所作陳述的真實性。版權局不會調查任何陳述的真實性。如果作品是以假名注冊的,版權局不會調查申訴人與假名作者之間是否存在可證明的聯系。”[2019/5/23]
CLIP模型做的事是什么?把來自互聯網的4億張圖片和4億條文本進行編碼,并兩兩配對,形成一個4億*4億的矩陣。
CLIP模型的訓練目標是什么?通過各種各樣的復雜計算,讓原本匹配的圖片和文本產生正相關。將蘋果的照片和蘋果的文字進行匹配,而不是摩托車或其他。
CLIP模型實現的功能是什么?給定任何一個文本,能返回相關性最高的圖片;給定任何一張圖片,能返回相關性最高的文本描述。實現海量的圖像和文字特征的mapping。
GLIDE模型
有了mapping以后,接下來重要的是如何從視覺的描述中產生圖像,這是GLIDE擴散模型。
它就像是教小朋友學畫畫,先給小朋友看一張簡筆畫,逐漸把它擦掉,讓小朋友在大人的引導之下,試著從白紙開始恢復這張簡筆畫。
從計算機的視角來看,擦除的過程就是給圖片不斷增加噪聲的過程,這種噪聲是一種正態分布的噪聲,叫高斯噪聲,直到最后變成一張純噪聲的圖片。恢復的過程就是通過概率除去噪聲的過程,這中間往往會加一些指引,叫Guidance,以確保恢復的過程朝著對的方向。
動態 | Blockstream聯合創始人證實向Craig Wright提供了技術援助:據bitcoinexchangeguide報道,Blockstream的聯合創始人Gregory Maxwell證實,他確實給Craig Wright發了一封電子郵件,并向他提供技術援助。電子郵件的部分內容為:“如果你在BCH的影響力以任何方式減少,我認為這對我的利益是不利的。我不知道如何幫助修復這種情況,但在我看來,至少提供謹慎的幫助是明智的。”[2018/11/14]
左圖為增加噪聲的過程,右圖為除去噪聲的過程
GLIDE擴散模型帶來最大的創新就是在訓練的過程中融入了文本的信息。在CLIP模型的基礎上,在恢復的過程中嵌入文本的信息,這就導致了難度的快速疊加,因為它既要學會恢復的算法,又需要學會識別的算法。然而,在恢復的過程中,它并沒有把知識完全融入其中,如何才能把知識徹底地融入到圖像生成里?
GLIDE模型的抽象理解,就像是爸爸教小朋友騎車,目標是希望在有爸爸扶和沒有爸爸扶的時候,小朋友都能騎出同樣的曲線。這往往通過一種中間形態來實現,從一直扶到偶爾扶,偶爾撒手,最終的訓練目標就是不斷在這種狀態里達成。
GLIDE擴散模型的目標也是如此,在它的原理中,爸爸扶著小朋友就是分類器,能幫助分類或目標識別,撒手就意味著無分類器指引,有時會將一些文本的信息替換成空的字符串,隨機替換掉一些信息。當有分類器產生的曲線和沒有分類器指引產生的曲線一致時,整個文本的信息就融入到了生成過程中。
聲音 | Craig Wright:比特幣圖靈完整性是大多數人忽略的謬誤:Craig Wright在Deconomy的采訪中談到比特幣的圖靈完整性時表示:比特幣的圖靈完整性是大多數人都沒有想到的常見謬誤之一,圖靈完整機器可以計算任何可計算的數字,而不是無限數。在一個假想的計算機中,說它不是圖靈完成的概念,是因為它無法計算無限數,所以,有些人認為這需要循環,永遠繼續下去并在比特幣中存檔,否則它不是圖靈完整的。而這是一個不同的問題,這僅僅取決于存儲空間的多少,并非計算的本質。[2018/9/5]
有了GLIDE擴散模型以后,還可以制定不同的引導目標,因此會產生不同的效果,如果你想生成與某張圖片一樣效果的圖片,你可以輸入這張圖片,接著就會得到一張類似風格的圖片。這就像是一個小朋友的爸爸告訴他,自行車的前輪其實是個裝飾品,他最終在不斷的強調之下,就會學會這樣騎車的方式。
PRIOR模型
當CLIP模型將文本和視覺相連,GLIDE模型通過概率恢復一張隨機的模糊照片,并把文本信息融入其中,我們還缺少了這兩者之間的聯結,如何把文本描述映射到視覺描述中,這就是PRIOR模型的核心。
有了CLIP模型,雖然能夠實現文本和視覺之間相關性的描述,但還缺少一個轉換器,那就是面對一個新的描述,如何產生一張新的圖片。就像你教會了小朋友畫帽子,也教會了畫兔子,現在如何讓他畫一張戴帽子的兔子。PRIOR模型其實是在CLIP模型之后產生一個新的效果,在CLIP模型中用到的文本和圖片編碼器,給編碼后的東西再增加一個特征,這就使得文本和圖片的信息都融合在同個維度,便于我們去操作。
三個模型的關系
CLIP模型理解了圖片與文字的關系,PRIOR模型就是在理解圖片與文字的關系之上,從文字中產生一個腦海中的構圖,GLIDE擴散模型就是要把腦海中的構圖畫出來,畫出人類能懂的視覺圖片。
聲音 | Craig Wright:ERC-20是“死路一條”:自稱是“幣特幣創始人“的Craig Wright在其社交媒體發表觀點稱,ERC-20是“死路一條”。Craig Wright對法律監管表示擔憂,并且很快就會有交易所禁止這些加密貨幣,不包括比特幣。[2018/7/18]
我們再從下圖論文的原理來理解一下。圖中有一條虛線,虛線的上方是預訓練的過程。左邊的TextEncoder,就是之前提到的文字轉換器Transformer,它把一段文字轉換成計算機能理解的表達。右邊的ImageEncoder,也就是視覺轉換器VisionTransformer,把人類理解的視覺圖片轉換成計算機的數據結構。
在經過大量的訓練之后,這兩者之間產生了具有相關性的連接,也就是文字和圖片之間的關系產生了非常強的理解。
虛線之下是生成的過程,把文本放進PRIOR模型里面,從這段文本中生成計算機能理解的視覺表達結構,再用GLIDE模型生成人類能看懂的圖片。雖然上下兩只小狗的圖片看起來不一樣,但它們本質上包含了同樣的文本語義,這樣就實現了任何一段文本都能生成出一張人類能看懂的圖片。
發展歷程
整個夢開始的地方,始于2017年Google發布的一篇論文《Attentionisallyouneed》。它讓算法學會了人類的注意力機制,就是當我們去看一張圖片時,會看到重點,同時忽略背景的信息。
這篇論文發表之后,帶來一個NLP的模型,叫Transformer,一經發布便快速屠榜,接著很快有了BERT模型,有了OpenAI的GPT-3模型。在視覺領域,有DERT模型,iGPT模型,以及上面提到的VisionTransformer。
Transformer模型的重要性在于,它是我們剛才提到的三個模型的底座,學會找出圖片和文字的重點,才能夠搭建CLIP模型,才可能有之上的PRIOR和GLIDE擴散模型。
夢想的實現還有另一半,圖像生成。
從2005年開始的求解特定概率密度函數,通俗理解就是通過最快的方法去估算正態分布,再到2008年的去噪自編碼器的研發,加入高斯噪聲,一種正態分布的噪聲,再將它去除,我們用到的很多拍照中的去噪、降噪功能就是從這里來的。到了2011年,有人嘗試將這兩種算法結合在一起,2015年,開始嘗試用這種思想還原照片。但這時候還原照片的質量還不是很高。
時間撥轉到2019年,中國的宋飏博士把朗之萬動力學引入到數據分布的估算中,產生了非常好的效果。2020年,Google發布名叫DDPM的論文,這篇論文核心就是結合朗之萬動力學和擴散模型,產生了非常高的圖片生成質量。
2014年引起軒然大波的GANnetwork對抗生成網絡,已經能生成出效果不錯的圖片,但它的訓練難度很高,擴散模型降低了圖像生成模型的訓練難度,還能生成比GAN更多元的圖像。
在夢想實現的2021和2022年,OpenAI和Google都開始嘗試把文本信息加入到擴散生成的過程中,產生了今天的GLIDE模型。OpenAI在思想上的突破,用Transformer去海量地理解圖片和文本,產生了CLIP模型,再用擴散模型在圖像生成中融入海量的圖文信息,優質的AIGC圖片終于誕生。
接下來,我們將圍繞一些問題進行討論。
1、從產品化、商業化的角度出發思考,目前AIGC的技術層面的發展會產生影響?
有兩個維度。第一個維度是在海量數據中尋找我們最想要的內容,第二個維度是在海量數據中得出新的內容,反向給予我們創造的靈感。
從AI本身的能力再進行泛化的話,一方面很多現有產品的使用體驗能得到巨大的提升,例如在筆記類的軟件中加入AI后,在寫作過程中能得到更好的體驗;另一方面,未來創意不強,生成能力較弱的人可能會被AI替代。
2、回到基本邏輯,我想確認下自己的理解是否正確:相較于Transformer,ChatGPT并不是在AI領域出現了一個顛覆性的技術創新,而只是在一個模式上加了人類的feedback,設置了不斷迭代的參數,它自己越搞越聰明了。
過去的所有模型的進化,其實圍繞兩個方向在進化。第一個是DNA,第二個是方法論。DNA很像真實世界中材料的研發,方法論更像是真實世界中材料的使用。
Transformer是DNA的進化,是更核心的突破。ChatGPT是方法論,但它就更簡單了嗎?并不是的,它在探索的過程中經歷了很長的時間,同時要滿足很多先決條件,這個方法論才能得以運用。不論方法論突破還是DNA突破,都很有意義。
3、未來的生意模式會怎么樣?會不會更集中?圍繞這樣ChatGPT的模型,它會產生哪些創業方向?
可能有兩種商業模式,一種是ToB的,就跟阿里云一樣,另外一種就是讓開發者在這種大模型上去ToC。不論是DNA還是在方法論上的突破,它都可能讓一個企業產生壟斷,產生巨頭效應。
ChatGPT和用戶不斷互動,會得到源源不斷的反饋數據,數據也是一種資產,一種生產要素。這種生產要素產生的產品會是人類更高頻使用的東西,它的頻率越高,這種生產要素就越來越重要,反饋能夠創造的要素提升就越來越重要,同時帶來的經濟價值就越來越大。
4、會不會有規模效應或雙邊網絡效應?
我覺得背后既有這種網絡效應,又有一些規模效應。如果設想一下,第一個研發出來的這種中文大模型,它會快速地獲取市場上有限量的開發者,開發者在用它的產品去面向ToC去獲取C端用戶,它的數據會源源不斷反饋回來,去優化它的效果,其實就會產生更強的壟斷效應。
5、從投資的角度,在AIGC,我們應該投什么樣的團隊?
我覺得傳奇的團隊是有創造DNA能力的團隊,黃金的團隊是有能力把應用層和AI完美結合的能力,白銀的團隊就是打造AI領域的基礎設施的團隊。
兩年過去了,元宇宙還「火」嗎?答案是肯定的,2023年才剛剛開始,連「酒中之王」茅臺也投入了元宇宙的懷抱,還正式上線了元宇宙平臺APP「巽風」.
1900/1/1 0:00:00撰文:WLabs瓜哥 XtoEarn里的項目真的都是同質化的嗎?怎么從不同的角度去歸類?如何從投資邏輯上去研判項目的好壞?回顧從2020年到2022年這一波完整的「谷底→高峰→谷底」加密行業周期.
1900/1/1 0:00:00撰文:Fiona,IOSGVentures我們目前正處于從關注Infra到關注用戶的轉變中,究其原因:1)就如同DeFi和GameFi在過去的繁榮一樣.
1900/1/1 0:00:00曾在2022年初以255億美元身家登上《胡潤富豪榜》的巴里·西爾伯特(BarrySilbert),那個曾用他的成年禮錢來交易棒球卡并獲利的男孩,現在沒有錢了.
1900/1/1 0:00:00原文:《Bankless2023Predictions》Bankless創始人對2022年的預測總體成績為C-,預測成功的包括L2市值進入前10、DAO的發展及NFT擴展.
1900/1/1 0:00:00周報概要: 1、上周NFT總交易額:160,762,515(美元)2、上周NFT總交易筆數:663.
1900/1/1 0:00:00