比特幣價格 比特幣價格
Ctrl+D 比特幣價格
ads

FLO:教師節燒腦課程:比特幣的醉漢價值_Grayscale Bitcoin Trust tokenized stock FTX

Author:

Time:1900/1/1 0:00:00

前言:S2F是用來對比特幣價值進行預測的模型。那么,S2F是否是虛假的假設?本文則試圖對此進行證偽,最后它的結論是:“比特幣就像是醉漢,而Stock-to-Flow就是回家的路。”本文作者是Nick,由藍狐筆記“HQ”翻譯。

摘要

本文將探討比特幣的價值是否存在stock-to-flow的關系。對所提出的對數模型的統計有效性、各變量的平穩性以及潛在的虛假關系都進行了檢驗。建立了一個向量誤差修正模型,并與stock-to-flow模型進行了比較。

盡管這些模型中,有些在Akaike信息標準方面超過了原始模型,但它們都未能對stock-to-flow是比特幣價值的一個重要非虛假預測因素的假設進行否定。比率模型是指可用資產或儲備資產的數量除以每年生產的數量,Stock-to-Flow比率是一個重要的指標,因為S2F中較高的指標值反映了資產每年通貨膨脹發生率的降低。)

注意

·所有分析均使用Stata14完成

·不構成投資建議

簡介

科學方法對大多數人來說是難以理解的,畢竟這是反直覺的。它的最終結論可能不反映個人信仰。這個方法需要一個基礎來理解這個基本概念:存在錯誤是允許的。這應該是學校里教的東西。如果我們害怕出錯,就永遠不會提出新的建議。

因此,科學發現的歷史,是由其“機緣巧合的本質”所決定的。人們偶然發現的事情,可能和他們最初打算做的事情一樣重要。他們最初的想法也許是不正確的、或沒有定論的,但他們在探索的過程中發現的東西為后繼者建立了框架。

根據偉大的現代科學哲學家卡爾·波普爾的說法,檢驗一個假設是否存在錯誤的結果,是唯一可靠的方法,可以為論證它是正確的論點增加份量。

報告:VR代幣在上半年增長704%,PEPE增長3700倍:金色財經報道,據CoinMarketCap最新研究,2023年上半年對于全球加密貨幣市場來說既充滿挑戰又令人興奮,第二季度末市值達到1.17萬億美元,較年初至今增長48%。第一季度和第二季度的總市值相似,然而,一些行業卻出現了顯著的增長,使它們成為人們關注的焦點。報告稱,其中虛擬現實/增強現實(VR/AR)行業經歷了驚人的飆升,市值飆升了704%。

該報告指出,6月份人們對SingularityNET(AGIX)和Fetch.ai(FET)等人工智能相關代幣的興趣重新抬頭,從6月中旬的低點反彈了近40%。同樣,圍繞meme代幣的投機狂潮在上半年加劇,以標志性PEPE代幣為首,新增了260多種新代幣。具體來說,PEPE在2023年上半年的價值超過了3700倍。盡管PEPE從5月份的峰值經歷了回調,但CoinMarketCap透露,該代幣從6月中旬的低點反彈了近100%。[2023/7/21 11:08:08]

如果嚴格而重復的檢驗不能證明一個假設是錯誤的,那么每次檢驗假設一個更高的可能性是正確的。這個概念叫做可證偽性。本文旨在對比特幣價值的stock-to-flow模型進行證偽,該模型是在“比特幣價值稀缺性模型”中被定義的。

對問題進行定義

要證偽一個假設,首先我們必須說明它是什么:

零假設:比特幣的價值是比特幣stock-to-flow的函數

備選假設:比特幣的價值不是比特幣stock-to-flow的函數

S2F模型的作者通過在比特幣市值的自然對數和stock-to-flow的自然對數上擬合一個普通最小二乘回歸來檢驗H0。對于這兩個變量中的對數轉換,除了對數模型可以用冪律表示外,沒有其他的方法或任何已知的推理可以表示。

Talos與BCB Group將合作提供加密貨幣交易全生命周期服務:2月15日消息,數字資產交易平臺Talos與支付服務提供商BCB Group將合作,以提供加密貨幣交易前端、中臺和后臺全生命周期服務。

據悉,BCB總部位于倫敦,是外匯和加密貨幣投資者的銀行合作伙伴,允許客戶使用法定貨幣和加密貨幣用于支付、運營和交易。Talos旗下端到端交易平臺提供市場連接、智能訂單路由和執行算法。(CoinDesk)[2023/2/15 12:08:06]

該模型沒有考慮由于非平穩性而產生虛假關系的可能。

方法

在本文中,我們將使用正態回歸探索該模型,并確定對數轉換是否必要、或是否適當,并探索可能的混淆變量、交互作用和敏感性。

另一個有待探討的問題是非平穩性。平穩性是大多數統計模型的假設。這是一個在任何時刻都沒有趨勢的概念,例如,對時間來說,平均值是沒有趨勢的。

在進行平穩性分析之后,我們將探討協整的可能性。

符號說明

可用的數學符號是相對有限的。估計統計參數的常用符號是在頂部加一頂帽子。相反,我們將估計定義為。例如β的估計值=。如果我們表示的是一個4x4矩陣,我們將用表示等。下標項用@-eg表示,比如向量X中的第10個位置,我們通常用10下標X,即。

普通最小二乘法

普通最小二乘回歸,是一種估計兩個或多個變量之間線性關系的方法。

首先,定義一個線性模型,它是X的某個函數Y,但有一些誤差。

Y=βXε

其中Y是因變量,X是自變量,ε是誤差項,β是X的乘數。OLS的目標是估計β,并使ε最小化。

為了使成為可靠的估計數,必須滿足一些基本假設:

以太坊鏈上NFT銷售總額突破360億美元,但1月下降約13%:金色財經報道,據 Cryptoslam 最新數據,以太坊鏈上 NFT 銷售總額已突破 360 億美元,截至目前為 36,000,695,169 美元,鏈上交易總量達到 25,249,875 筆。數據顯示,2023 年 1 月以太坊鏈上 NFT 銷售額約為 4.76 億美元,較 12 月 5.46 億美元有所下降,降幅超過 12.8%。[2023/2/1 11:40:26]

1.因變量和自變量之間存在線性關系

2.誤差是同質的

3.誤差正態分布,平均值為零

4.誤差不存在自相關

線性

我們首先看看市值與stock-to-flow之比的非轉換散點圖

圖1-市值與stocktoflow之比。數據太稀疏,無法確定關系。

在圖1中,我們有了一個很好的理由來使用市場價值的對數——因為跨度太大了。取市場價值的對數并重新繪制,可以得到一個我們非常熟悉的對數圖模式。

圖2-市值對數與SF之比。一個清晰的對數模式出現了。

取stock-to-flow的對數并再次繪制,我們得到了圖3,存在明顯的線性模式。

圖3-出現了明顯的線性關系

這證明了“對數-對數”的這種轉換是唯一真正能顯示良好線性關系的方法。

另一種轉換是取兩者的平方根。這個模式如圖4所示。

圖4-平方根轉換

顯然,對數變換最適合滿足第一個假設的要求。

因此,初步分析不能拒絕H0。

下圖5展示了對數擬合回歸的結果,其中=

CZ:幣安已暫停部分在資產價格異常波動中盈利的賬戶提現:金色財經報道,幣安首席執行官CZ在社交媒體上發文表示,“幣安已暫時鎖定部分盈利賬戶的提現,這在社交媒體上引起了許多來自不同國家的抱怨。我們知曉平臺不能過多干預,會導致‘過于集中’的攻擊。但在多大程度上需要干預存在一個平衡。有時,這發生在自由市場中,我們需要讓它發揮作用。”

此前報道,Binance稱SUN、ARDR、OSMO、FUN和GLM等資產出現異常價格變動,團隊正在調查。[2022/12/11 21:37:23]

圖5-對數回歸結果

使用該模型,我們現在可以估計殘差和擬合值,并檢驗其他假設。

同方差性

如果誤差項中的恒定方差的假設是真的,那么誤差項的預測值中的每一個值,都會隨機地在0左右移動。因此,使用RVF圖是一種簡單有效的圖形方法,來確定這一假設的準確性。在圖6中,我們看到的是一個模式的一小點,而不是隨機散射,這表示誤差項的一個非恒定方差。

圖6-RVF圖。這個圖的走勢表示可能存在問題。

這樣的異方差性,會導致系數的估計值具有更大的方差,因此不太精確,并且導致p值比它們原本的更加顯著,因為OLS程序沒有檢測到增加的方差。因此,當我們計算t值和F值的時候,我們對方差進行低估,從而得到更高的顯著性。這也對的95%置信區間產生影響,β本身是方差的函數。

在這個階段,繼續使用回歸來理解這些問題的存在是合適的。我們可以用別的一些方法來處理這些問題-例如,自舉法、或方差的魯棒性估計值。

圖7-異方差的影響,魯棒性估計所示

如圖7所示,雖然方差小幅增加,但在很大程度上,異方差并不會有那么大的不利影響。

MEXC旗下基金M-Ventures規模已達2億美元:9月29日消息,在新加坡舉辦的Web3盛會“Token2049”上,加密交易平臺MEXC宣布旗下基金正式升級為 M-Ventures,將致力于成為通過戰略投資、并購重組、組合基金、項目孵化等方式賦能加密貨幣領域創新的綜合性基金。目前,其自有資金規模已達2億美元。[2022/9/29 6:01:17]

在這個階段,我們不能因為異方差而拒絕H0。

誤差的正態性

誤差項的正態分布且平均值為零的假設,比線性或齊次性的假設更不重要。非偏態殘差的非正態性,會使置信區間過于樂觀。如果殘差有偏差,那么你的結果可能會有一點偏差。然而,從圖8和圖9可以看出,殘差有足夠的正態性。平均值表面上為零,雖然正式測試可能會拒絕正態性的假設,但它們與正態曲線的擬合程度足以使置信區間不受影響。

圖8-覆蓋正態分布的誤差項直方圖。

圖9——誤差項的正態分位數圖。圓點離直線越近,正常擬合效果越好。

杠桿

杠桿是這樣一個概念:回歸中并非所有數據點對系數的估計都有同等的貢獻。一些高杠桿率的點可能會顯著地改變系數,這取決于它們是否存在。在圖10中,我們可以很清楚地看到,從早期開始,出現了一些令人擔憂的問題。這一點也不奇怪,S2F的作者在前面說過,收集早期的價值存在一些問題。

圖10-杠桿與殘差平方之比

如果我們在沒有這些點的情況下進行重新回歸,并且由于我們知道存在異方差問題,那么我們應該使用魯棒性估計值。

圖11-去除高杠桿的點,實質上是改變對的估計,并改進了赤池信息準則。

在圖11中,我們可以看到,通過去掉這三個點后,的估計值大不相同,赤池信息準則也大不相同,這表明盡管R2較低,但這是一個更好的模型。

OLS結論

基本診斷表明:原始OLS中存在一些小的可修復的問題。現階段我們不能拒絕H0。

平穩性

平穩過程被稱為0階積分。非平穩過程是I(1)或更多。在這種情況下,整合更像是“可憐”的——它是滯后差異的總和。I(1)意味著如果我們從序列中的每個值減去第一個滯后值,我們將有一個I(0)的過程。眾所周知,非平穩時間序列上的回歸是可以識別出虛假關系的。

在下面的圖12和13中,我們可以看到我們不能拒絕ADF檢驗的零假設。ADF檢驗的零假設是指數據是非平穩的。也就是說,我們不能說數據是平穩的。

圖12和13——對ln(市值)和ln(SF)單位根的GLSADF檢驗。

KPSS檢驗是ADF檢驗平穩性的補充檢驗。這個檢驗有一個零假設,即數據是平穩的。如圖14和15所示,我們可以拒絕兩個變量中大多數滯后的平穩性。

圖14和15-針對零平穩性的KPSS檢驗

這些檢驗證明了這兩個序列毫無疑問是非平穩的。但這有點問題,如果這個序列不是趨勢平穩的,那么OLS可能會被誤導去發現一個虛假關系。我們可以做的一件事情是:取每個變量的對數月差,然后重新做OLS。然而,由于這一問題在計量經濟學中普遍存在,我們有一個更具有魯棒性的框架——即所謂的協整。

協整

協整是一種處理一對I(1)過程、并確定是否存在關系、以及該關系是什么的方法。為了理解協整,我們舉一個簡單例子——醉漢和他的狗。想象一個醉漢用皮帶牽著他的狗回家,醉漢毫無方向地走來走去。狗走路也是相當隨機:嗅樹,吠叫,追逐抓撓一只小狗等等。

不過,狗的整體方向會在酒鬼的皮帶長度的范圍內。因此我們可以估計,在醉漢回家路上的任何一點上,狗都將在醉漢的皮帶長度內。這種簡化類比的就是一個粗略的協整——狗和主人一起移動。

不同于相關性,假設一只流浪狗,在回家路上95%的時間都跟著醉漢的狗在走,然后跑去追一輛車到了鎮子的另一邊。流浪狗和醉漢之間的路徑有著很強的關聯性,不管醉漢曾經有過多少個在外面晃蕩的夜晚,這種關系并不意味著什么,也不能用來預測醉漢將會在哪里,在過程中的某些部分,它是真的,而在另外一些部分,它是非常不準確的。

為了找到醉漢,首先,我們將看到我們的模型應該使用什么樣的滯后順序規范。

圖16-滯后順序規范。用于確定AIC最小值。

我們在這里確定了:最合適的滯后規范是2階AIC最小值。

接下來,我們需要確定是否存在協整關系,Johansen框架是很好的工具。

圖17-Johansens協整測試

圖17的結果,說明lnvalue和lnSF之間至少存在一個協整。

我們將VECM定義為:

Δ=αβ`Σ(Γ@iΔ)vδtε@t

圖18-關于整體模型方程的信息

圖19-短期參數及其各種統計數據的估計

圖20-模型的協整方程

圖21:VECM的Akaike信息標準

根據在上述的數據,我們可以估計:

·=

·=,

·=,and

·=.

總的來說,結果表明該模型非常適合。協整方程中的ln(SF)系數和調整參數都具有統計顯著性。調整參數表明,當協整方程的預測值為正數時,由于協整方程中的ln(value)系數為負,ln(value)低于其平衡值。系數L.ce1的估計值為-0.14。

因此,當比特幣的價值過低時,它很快就會上升回到lnSF。系數L.ce1估計值為0.028,意味著當比特幣價值過低時,它會向均衡方向調整。

圖22-協整方程隨時間的估計

在上圖中,我們可以看到協整方程是趨向于零的。雖然它在形式上可能不是靜止的,但它確實在接近平穩狀態。

來自STATA手冊:

具有K個內生變量和r個協整方程的VECM伴隨矩陣具有Kr單位特征值。如果過程是穩定的,則剩余r特征值的系數嚴格小于1。由于特征值的系數沒有總分布,因此很難確定系數與另一個系數是否接近。

圖23-伴隨矩陣的根

特征值圖顯示,剩余特征值都不接近單位圓。穩定性檢查并不能說明我們的模型是存在指定錯誤的。

圖24-脈沖響應函數

上圖表明,stock-to-flow價值的正交沖擊,對比特幣的價值具有永久性影響。

這就是我們的底線。Stock-to-flow不是一個隨機變量,它是一個隨時間變化的已知值的函數。stock-to-flow不會受到沖擊,即它的價值可以由提前計算得到精確值。然而,這個模型提供了非常有力的證據,證明了在stock-to-flow與比特幣價值之間存在著一種基本的非虛假關系。

局限性

在這項研究中,我們沒有考慮任何混淆變量。鑒于上述證據,任何混淆都不太可能對我們的結論產生重大影響——我們不能拒絕H0。我們不能說“stock-to-flow與比特幣價值之間沒有關系”。如果是這樣的話,就不存在協整方程了。

結論

雖然本文提出的一些模型在Akaike信息準則方面超過了原始模型,但所有這些模型都未能否定“stock-to-flow是比特幣價值的重要非虛假預測因素”的這個假設。

用一個比喻來說明這一點:如果我們把比特幣的價值看作一個醉漢,那么stock-to-flow并不是他真正的跟班狗,而更像是他走的路。醉漢會在路上到處游蕩,有時會停下來、滑倒、錯過一個拐彎處、甚至在路上抄近路等;但總的來說,他會沿著這條路的方向回家。

簡而言之,比特幣就像是醉漢,而Stock-to-Flow就是回家的路。

------

風險警示:藍狐筆記所有文章都不能作為投資建議或推薦,投資有風險,投資應該考慮個人風險承受能力,建議對項目進行深入考察,慎重做好自己的投資決策。

Tags:FLOFLOWTOCSTOBFLOKI幣FlowComTOTOCATGrayscale Bitcoin Trust tokenized stock FTX

抹茶交易所
FEX:關于WBFex上線ZDMT的公告_SafeXI

WBFex即將上線ZDMT,并在開放區開通ZDMT/USDT交易對,具體時間安排如下:充值時間:2019年9月6日17:00交易時間:2019年9月6日19:30提現時間:2019年9月16日1.

1900/1/1 0:00:00
BIKI:BiKi.com關于AMAL凈買 交易競賽獎勵發放的公告_TPS

尊敬的用戶: AMAL聯合BiKi.com舉辦的的活動已經結束了。活動獎勵已于9月10日發放至獲獎用戶賬戶。請您查看.

1900/1/1 0:00:00
LIBRA:Libra或增加新加坡元支持 為什么?_ACE

據彭博社報道,Facebook在一封寫給美國參議員關于加密項目Libra的信中提到,支持該穩定幣的法定貨幣可能還會包括新加坡元。Facebook此舉是為了解決對中國可能會影響該加密貨幣的擔憂.

1900/1/1 0:00:00
GAS:無版本區別的EVM(以太坊智能合約虛擬機)_Xfinance

編者注:本文為Parity開發者WeiTang寫作的,關于如何增強EVM后向兼容性的文章,改進Gas機制的方案堪稱大膽.

1900/1/1 0:00:00
BFT:GT - BFT 兌換情況公示_BITGET交易所中文名字

Bitget全球用戶: 根據前期公示的GT銷毀計劃,Bitget已于2019年9月5日15:00(UTC08:00)結束GT-BFT的兌換工作.

1900/1/1 0:00:00
HOPE:關于全球首發上線HOPE及其交易的公告_HOP

尊敬的EXX用戶: ?????您好!根據市場的情況及用戶的建議,EXX將于香港時間2019年9月9日15:00開放HOPE的充值業務.

1900/1/1 0:00:00
ads