比特幣價格 比特幣價格
Ctrl+D 比特幣價格
ads
首頁 > USDC > Info

DAI:AI 賦予文字無限力量:“由文本生成一切”的一年_NCE

Author:

Time:1900/1/1 0:00:00

“一種基于文本指令創建繪圖的算法” - MidJourney

你現在看到的是文字——文字作為一種媒介,讓我向你傳達一連串的想法。自從人類用文字記錄事物,而不再依靠記憶,我們就一直在使用一連串符號來傳遞信息,你可以把所有這些稱為“文本”。

今時今日,以及在過去的幾個世紀里,我們已經將我們對世界的知識、我們的想法、我們的幻想轉化為文字。也就是說,人類的大部分知識現在都以文字的形式存在,我們也在用其他方式交流,比如肢體語言、圖像、聲音等。但文字是我們用于記錄交流、思想和觀念的最豐富的媒介,因為使用起來非常便利。

當GPT-3被輸入互聯網信息時,它消化了我們對周圍世界的觀察、我們的無聊世事、我們彼此之間瘋狂的爭論……,學會了在一連串符號化的人類混亂表達中預測下面的內容。

在學習我們連詞成句進行交流的過程中,一個大型的語言模型會模仿(或“鸚鵡學舌”)我們如何開玩笑、安慰和發布命令。GPT-3開啟了一場“革命”,在 “從文本到文本”方面表現得非常好:輸入一些任務例子(如完成一個比喻)或對話開頭,這個生成模型(通常)就可以學習任務或繼續對話。

我們在文字的使用方式中,幾乎存在一定的“普遍性”,而我們的技術只是在最近才達到這樣的程度:人工智能系統可以加以整合,發掘我們使用語言的方式,從而描述其他形態。實現強大文本生成能力的技術,也能用以實現文本條件下的多形態生成。“從文本到文本”變成了“從文本到X”。

在“從文本到文本”中,你可以要求模型對一只狗進行描述。在“從文本到圖像”中,你可以將該描述轉化為其對應的視覺效果。文本-圖像模型提供了一種現有圖像生成系統所不具備的新能力。現有的模型,例如GANs,經過訓練,可以在給定的噪聲輸入下(以及用于類別條件圖像生成的類別信息)生成真實的圖像。但這些模型的可控水平不高,難以達到 DALL-E 2、Imagen 等模型的高度:用戶可以要求生成一只戴著太陽鏡的袋鼠,站在特定的建筑物前,拿著帶有特定短語的牌子。你的愿望就是算法的命令。

幣安AI NFT生成器Binance Bicasso正式上線:金色財經報道,幣安官方宣布正式推出AI NFT生成器Binance Bicasso,支持用戶用文本或圖像創建獨特的藝術品,并將他們的作品鑄造為BNB鏈上的NFT,2023-03-29 12:00 (UTC)到2023-03-30 00:00 (UTC)期間,所有符合條件的幣安用戶都可以使用Binance Bicasso免費鑄造一枚NFT,總計10萬枚。此外,幣安還宣布將推出“Exclusive Bicasso”NFT Collection系列。[2023/3/27 13:29:30]

谷歌 Parti 生成的圖片

在“文本到圖像”得以有效實現之后,更多的應用隨之而來:“文本到視頻”是下一個熱點。“文本到音頻”技術已經存在。“文本到動圖”和“文本到3D”技術說明了文字可以轉化為其他事物。

這篇文章的主題是“從文本到一切”的一年。最近的技術發展,使人們能夠以更有效的方式快速地將文本轉換為其他形態。這些發展令人興奮的,并有望在未來幾年內實現大量的應用和產品。但是我們也應該記住,“文本的世界”是有局限性的,只是一些空洞的思考,描述世界卻不與其發生實際互動。我將討論時至今日的技術進步,也會思考如果文本信息的“呈現”僅僅停留在文本領域,“從文本到一切”會有怎樣的局限性。

從技術上說,GPT-3揭開了一切的序幕。這已經被提到很多次了,所以我就簡單說一下:OpenAI訓練了基于transformer 架構的大語言模型。這個模型比之前的GPT-2大得多,訓練的數據也多得多(1750億個參數vs 15億個參數;40TB的數據vs 40GB),OpenAI當時認為發布這個模型太危險了。它可以做一些事情,比如編寫不那么復雜的JavaScript代碼。有些人會覺得很酷,有些人會覺得一點也不酷,有些人會覺得一般般。創業公司都建立在新的最大的模型上,新聞和學術文章都在贊揚和批評新模型,美國以外的國家也在發展自己的大語言模型參與競爭。

Web3社交平臺Plai Labs獲得3200萬美元的種子輪融資:金色財經報道,Web3社交平臺建設者Plai Labs周四表示,該公司在由加密貨幣投資公司a16z牽頭的種子輪融資中籌集了3200萬美元。Plai Labs由游戲工作室Jam City和傳統社交平臺Myspace的幾位前高管領導,旨在利用這筆資金發展其團隊并雇傭開發人員,建立結合Web3和人工智能的去中心化社交平臺。Plai Labs的營銷和運營執行副總裁Josh Brooks是Jam City的企業營銷和招聘的前高級副總裁。他之前還擔任過Myspace的編程和音樂副總裁。[2023/1/20 11:22:34]

2021年1月,OpenAI 推出了一個名為CLIP的新人工智能模型,它擁有與GPT-3類似的zero-shot能力。CLIP向連接文本和其他形態邁出了一步,它提出了一種簡單、優雅的方法來訓練圖像和文本模型,當有人進行查詢時,整個系統可以在可能的標題選擇中,把圖像與相應的標題相匹配。

DALL-E可能是第一個“善于”從文本產生圖像的系統,與CLIP在同一天發布。CLIP在第一代DALL-E中沒有使用,但在其后續版本中發揮了重要作用。由于能夠根據文字提示生成合理的圖像,DALL-E上了多個新聞頭條。

雖然一些人工智能先驅感嘆,如果我們想實現“真正的”通用智能,深度學習不是辦法,但“文本到圖像”模型無疑適合運用深度神經網絡的力量。深度學習模型中的一些互補性進展,使得“文本到圖像”模型取得了進一步的飛躍:擴散模型被發現,實現了極高的生成圖像質量。(參見論文Diffusion Models Beat GANs on Image Synthesis)。

DALL-E 2的發布時間距離DALL-E約一年多,利用擴散模型的技術進步,創造出比DALL-E更逼真的圖像。而DALL-E 2的風頭很快就被Imagen和Parti搶去——前者使用擴散模型展現了驚艷的水準,后者則摸索出了一種補充性的自回歸方法來生成圖像。

RAI Finance已將團隊代幣轉移至RAI Finance DAO:9月26日消息,跨鏈交易協議RAI Finance已將團隊代幣轉移至RAI Finance DAO相關錢包地址。

據悉,SOFIP-028提案此前已通過,要求RAI Finance核心貢獻者建立一個多重簽名錢包,并將團隊代幣(SOFI)轉移到RAI Finance DAO。[2022/9/26 7:21:21]

故事并沒有到此結束。Midjourney是一個用于圖像生成的商業擴散模型,由同名實驗室發布。穩定擴散(Stable Diffusion)模型借鑒了對潛在擴散模型的新研究,可以用有限的計算資源進行訓練,因為Stability AI公司選擇公開該模型及其權重,Stable Diffusion的發布受到了萬眾矚目。

神經網絡架構的創新并不是促成以上改進的唯一原因。雅虎在2015年發布了Yahoo Flickr Creative Commons 100 Million Dataset(YFCC100M),在當時是有史以來最大的公共多媒體數據集合。最近,Large-scale Artificial Intelligence Open Network(LAION)發布的數據集更在規模上令YFCC100M黯然失色。2021年發布的LAION-400M包含4億個圖像-文本對,然后是2022年發布的LAION-5B包含50億個圖像-文本對。

值得注意的是,雖然這些數據集能夠大規模地訓練圖像-文本模型,但它們并非沒有問題。The Decoder的報告曾發現LAION的數據集包含未經同意發布的病人圖像,研究人員也評論說,該數據集的質量并不純正。如此龐大的數據集必然會有其他的倫理問題出現,OpenReview上的作者和審稿人似乎就這些問題進行了頗有見地的意見交流。

如果人工智能模型可以將文本轉換為圖像,那么它們可以將文本轉換為視頻嗎?當然可以!10月份,一批從文本到視頻的生成軟件面市。Meta公司的Make-a-Video可以根據文本和靜止圖像生成視頻,而谷歌大腦的Phenaki可以根據一系列構成故事的提示詞生成一個連續視頻。

以太坊聯合創始人Mihai Alisie正在研究基于以太坊的社交網絡:以太坊聯合創始人Mihai Alisie表示,以太坊最大的障礙不是可擴展性,而是社區。目前,他的創業公司Akasha正在研究基于以太坊的社交網絡框架和“超級應用程序”。(decrypt)[2020/8/4]

也許更有用,或者說更令人擔憂的是,這些生成模型也能勝任代碼的編寫。當用戶注意到GPT-3可以寫出像樣的代碼時,GPT-3開始登上新聞頭條,聲名鵲起。從那時起,代碼生成語言模型的能力有了很大的進步。OpenAI的Codex能將自然語言轉化為代碼,并且許多其他類似的模型也在紛紛效仿。DeepMind的AlphaCode也能以合理的水平解決編程問題。

這些技術進步彼此追趕的速度令人印象深刻,正如Kevin Roose等人所評論的那樣:“AI的發展速度如此驚人,怎么強調都不為過。我剛寫完一篇關于AI驚人發展速度的文章,市場上就有了一些重大發布,包括OpenAI的Whisper(語音到文字的轉錄軟件)和文字到視頻的生成軟件。”

而且AI還可以更進一步:文本也可以轉化為其他媒介,包括音頻、動作和3D。

而且,正如我們的同伴Jacky Liang博士所展示的,語言模型甚至可以根據自然語言指令編寫機器人政策代碼。

動態 | Makerdao Q3 動能報告:Dai 月平均復合增長率為 27%:Makerdao 公布第三季度 Dai 數據動能報告,該報告概述了 2019 年 7 月至 10 月時間段內 Dai 采用的關鍵指標。該報道顯示,在過去四個月中,Dai 活動數據增長了三倍多,9 月收發 Dai 的獨立地址超過 66,000 個。上一份 Dai 的數據報告顯示,5 月 Dai 達到歷史最高記錄,即 16,000 個活動地址。此外,另一個重要的采用指標至少擁有一個 Dai 的地址數量顯示,Dai 正在穩定增長,其平均每月復合增長率為 27%。Dai 使用在 8 月份達到峰值,其中 Dai 的使用地址超過 109,000 個,此次高峰是由于 Coinbase Earn 推出的 Dai 活動所致,從活躍的智能合約數據來看,Coinbase 此次活動至少向 Maker Protocol 引入了 76,000 名新用戶,僅在 8 月就有 43,000 人。在目前流通中約 8000 萬 Dai 中,一半以上由私人用戶錢包直接持有,20%的 Dai 存放在去中心化應用中,7%存放在(可識別的)多簽名錢包中,6%托管在加密貨幣交易所中。 值得注意的是,借貸協議 Compound 幾乎存儲了 15%的 Dai,Compound 流動性池擁有將近 1200 萬 Dai,大約是 6 月份的 6 倍。[2019/10/9]

看起來生成式AI的可能性是無窮無盡的。我們只是看到了人工智能模型創造力的雛形。我預計,隨著越來越強大的模型開發出來,文本將能夠指導大量的發明創新。紅杉資本最近發布的《生成式AI應用格局》,已經展示了許多不同的細分賽道。

在一個特定的生成賽道內,有許多可能性和商業領域可以應用這種類型的生成工具。文本生成不僅可以承擔文章的寫作,還可以承擔平臺的后期語言調整;圖像生成和文本轉3D工具可以為游戲、信息應用和市場營銷創造各種工藝品;其他應用提供了生成文檔的能力。而且,正如上圖所指出的,音樂、音頻和生物/化學方面的應用還沒有到來。

即使是在“文本到文本”領域,也有海量的事情可以做:最近推出的ChatGPT在互聯網上炸開了鍋,基本上是因為該模型有能力以對話的形式全面回答問題。你可以要求它為你制定一個簡單的鍛煉計劃,寫一個課程大綱,建議你做什么,向你某位哲學家的作品,以及其他很多事情。

不夠值得注意的是,ChatGPT的知識有嚴重的局限性。

事實上,如果你要求ChatGPT提供關于某個特定主題的更多細節(例如普魯斯特關于時間性質的想法),它就會開始自己繞圈子——挺符合你對一篇高中生作文的期望。事實上,ChatGPT的存在可能會改變我們對寫作技巧的某些方面的理解。

> 也許有理由感到樂觀,如果你把這一切放在一邊。也許每個學生現在都能立即進入更高的寫作層次,每個學生都可以直接進入寫作事業的更精細的方面,任何難以模仿的東西都將變得更明顯。逗號連接、主謂不一致、冗長的修飾語等令人頭痛的機械性問題都不復存在,寫作的基礎技能已經直接給定了。

正如我所提到的,ChatGPT似乎還只能對它所闡述的主題作比較淺層次的描述,無法太深入。它可以寫得足夠流暢,并給你一些所需要的細節,但如果你能提供它所缺乏的深入分析和深刻理解,它就還不能替代你的工作。

通過在多模態數據集上訓練模型,我們可以理解文字、語言中編碼的信息如何映射到圖像、三維圖像和我們周圍世界的其他表現形式。“文本到圖像”表明,生成的圖像可以反映精確的文字描述。但是生成式AI還不能做到盡善盡美,Stable Diffusion模型在其生成的圖像中明顯存在著賦予人類正確手指數量的問題。

但值得注意的是,在“文本到圖像”系統中,僅僅通過擴大語言模型就能實現改進。Imagen使用僅在文本上訓練的T5編碼器(110億個參數),產生的圖像比DALL-E 2更逼真,后者的文本編碼器已被訓練為產生類似于匹配圖像嵌入的文本嵌入。

也就是說,將文本轉化為其他模態的可能性(我們可以做什么,以及我們用目前的方法能走多遠)并不明顯。對那些看到真正發展限制的觀點,我感同身受:盡管“文本到圖像”數據集可以告訴我們這個世界的很多景象,但它們不存在于物質世界中,缺乏像我們一樣能夠與物體、與其他人類互動的能力,并通過互動從周圍世界中收集視覺和非視覺信息。

但是顯然,有很多事情可以做。谷歌最近的RT-1(變形機器人)展示了如何利用自然語言來解決機器人任務。

“ChatGPT可以為你策劃一場主題派對,但它能幫你在派對結束后打掃屋子嗎?很可惜不能。我在谷歌機器人的朋友剛剛公布了RT-1,一款帶有眼睛、手臂和輪子的變形機器人!”

正如Fran?ois Chollet在一次采訪中向我指出的那樣,在“文本到圖像”這個領域,神經網絡的能力可以大放異彩。我也對潛在的二級應用場景感到興奮,比如在文本指導下的分子設計和其他并不顯而易見的創意。

然而,我認為要真正發掘“文本到X”模型的潛能,著實需要有更好的界面:我們需要以更好的方式,向模型表達我們的意思、概念和想法。提示工程作為一門學科出現,可以反映出我們目前與GPT-3等模型的交流方式是低效的。

展望未來,我認為在我們使“文本到一切”成為現實的過程中,我們需要解決兩個驅動發展的問題:

1. 我們如何構建界面,使我們能夠更好地將我們的意圖傳達給AI模型?

2. 這些模型能夠為我們帶來哪些有用的生成結果或行動?

但是在實際問題之外,我認為另一個問題更有意思:文本到{文本、圖像、視頻等}的模型并不完美,但非常好用。在將想法以圖像或視頻的形式呈現出來這一方面,這些模型遠比普通人,甚至是本身頗有藝術造詣的人類要好得多。正如Daniel Herman關于ChatGPT提出的問題:對從事藝術、從事視頻制作而言,文本到一切意味著什么?我們是否會進入這樣一個時期:藝術的基礎知識變得更加商品化,任何人都可以通過不同的媒介,以更精細的藝術手法傳遞自己的思想?在那里,水彩畫的技巧被簡化為提示中的文字,剩下的就是人類和AI系統之間的共舞互動?

一如既往,我們不應該夸大這些AI系統的能力——它們經常會出現顯而易見的錯誤。但是,當遇到正確的問題時,AI可以表現得很出色,為人類提供更多空間去做更有趣的事情,并追尋寫作、藝術的更高層次。

而且,除了這些直接的應用之外,“文本到X”模型及其基礎技術還有哪些尚待探索的進一步應用?研究人員已經在考慮如何使用NLP模型來預測蛋白質的氨基酸序列,這是預測字母序列的一個明顯的應用,離生成文本只有一步之遙。投資者和人工智能報告的作者Nathan Benaich,在我最近與他的談話中提到,他對最先進的擴散模型如何應用于生物和化學領域感到興奮。

今年是“從文本到一切”的一年,如果說從今年的驚人發展中可以學到什么的話,那就是文本作為一種“發出指令”的媒介,正變得更加強大。你不需要藝術培訓,也不需要一套數字藝術軟件或繪畫工具,也能來把“漂浮的城市”這一想法變成視覺現實。你可以把它說出來或打出來,讓它存在。

你將用你的文字創造什么?

來源:DeFi之道

作者:Daniel Bashir

DeFi之道

個人專欄

閱讀更多

金色早8點

金色財經

Odaily星球日報

歐科云鏈

Arcane Labs

深潮TechFlow

MarsBit

澎湃新聞

BTCStudy

鏈得得

Tags:DAIGPTNCEIONMDAI價格XGPT幣Curiosity FinanceShiba Floki Trillionaire

USDC
區塊鏈:金色觀察 | Mechanism Capital合伙人:百萬市場時代 從巴扎到DEX_MEV

文/Brian Fakhoury,Mechanism Capital合伙人;譯/金色財經xiaozou在Mechanism Capital.

1900/1/1 0:00:00
PAI:通縮代幣相關安全問題 教你如何完美避坑_fair幣價格今日行情

近期Beosin安全團隊研究發現,通縮代幣引起的安全事件依然頻發,造成眾多項目方資金的損失,因此,Beosin安全團隊準備了這篇詳解通縮代幣的文章,與大家分享.

1900/1/1 0:00:00
NBS:熊轉牛是否在發生 我們分析了四輪周期的 LTH-STH 鏈上指標_比特幣

圖片來源:由 Maze AI 生成比特幣市場通常會因為“減半”而出現 4 年漲跌周期,當比特幣短期持有者已實現價格翻轉比特幣已實現價格和長期持有者已實現價格時.

1900/1/1 0:00:00
比特幣:BTC NFT:Ordinals 變革及比特幣可擴展性討論_nbtc幣騙局

作者:Jelly, Redline DAO編輯:Alyson, Redline DAO 引言 Ordinals 是什么?自 2022 年 12 月底以來.

1900/1/1 0:00:00
BLUR:金色觀察 | NFT市場大戰:Blur市場地位可持續嗎?_PEND價格

文/Donovan Choy,Bankless作者;譯/金色財經xiaozou在戰勝無數虛張聲勢的挑戰者之后,OpenSea終于迎來了一個實力雄厚的競爭對手,已威脅到它的市場主導地位.

1900/1/1 0:00:00
IMI:詳解超級鏈概念:Base 只是 Optimism 的小野心_BSP

圖片來源:由 Maze AI 生成雖然區塊鏈行業發展已十年有余,但如果以太坊要與 Web2 巨頭相抗衡,并在軟件領域占據一片天地,就需要達到互聯網級別的規模.

1900/1/1 0:00:00
ads